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ABSTRACT

In this paper a numerical procedure for simulating two-fluid flows is presented. This

procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and

Nichols [1] and the continuum surface force (CSF) model developed by Brackbill,

et al. [2]. In the VOF method fluids of different properties are identified through
the use of a continuous field variable (color function). The color function assigns

a unique constant (color) to each fluid. The interfaces between different fluids are

distinct due to sharp gradients of the color function. The evolution of the interfaces

is captured by solving the convective equation of the color function. The CSF

model is used as a means to treat surface tension effect at the interfaces. Here a

modified version of the CSF model, proposed by Jacqmin [3], is used to calculate

the tension force. In the modified version, the force term is obtained by calculating

the divergence of a stress tensor defined by the gradient of the color function. In its

a_lalytical form, this stress formulation is equivalent to the original CSF model [2].

Numerically, however, the use of the stress formulation has some advantages over

the original CSF model, as it bypasses the difficulty in approximating the curvatures

of the interfaces.

The least-squares finite element method (LSFEM) [4] is used to discretize the gov-

erning equation systems. The LSFEM has proven to be effective in solving incom-

pressible Navier-Stokes equations and pure convection equations, making it an ideal
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candidate for the present applications. The LSFEM handles all the equations in

a unified manner without any additional special treatment such as upwinding or

artificial dissipation.

Various bench mark tests have been carried out for both two dimensional planar and

axisymmetric flows, including a dam breaking, oscillating and stationary bubbles

and a conical liquid sheet in a pressure swirl atomizer.

1 Introduction

Multi-fluid flows exist in many engineering problems. Examples of such flows include

injection molding, metal casting, crystal growth and spray atomization, etc. At the

interface of different fluids, surface tension exists as a result of uneven molecular

forces. The interface behaves in a way similar to a thinly stretched membrane.

The prediction of the evolution of the interface and the treatment of the interface

conditions have been a challenging task for numerical simulations.

The pressure jump across the interface is related to the surface tension coefficient

a (only constant a is considered), the curvature of the interface _, and the viscous

stress tensor r _ by the Laplace's formulas [5]:

(1)

where n is the unit normal of the interface, and the subscripts 1 and 2 denote the

two different fluids.

Most existing numerical methods for multiphase/free-surface flows fall into two cat-

egories : (1) those which use a fixed grid; and (2) those which allow the grid to

deform in time so that it remains surface-intrinsic. In the first category the compu-

tational grid is fixed throughout the calculation. An additional variable is used to

identify the interface (front). Examples of such methods are the Marker and Cell

(MAC) method proposed by Harlow and Welch [6] and the Volume of Fluid (VOF)

method by Hirt and Nichols [1]. The MAC method uses massless marker particles
which travel with the fluid to trace the fluids and the interface. The VOF method

modifies the MAC method by replacing the discrete marker particles with a contin-

uous field variable (color function). This function assigns a unique constant (color)

to each fluid and has a sharp gradient at fluid interfaces. Numerical methods in this

category are sometimes referred to as "front capturing" methods. Such methods

possess great flexibility in handling large deformations and topological changes, as

demonstrated by Daly [7] and Harlow and Shannon [8]. The most difficult task with

the front capturing approach is to accurately identify the interface and to impose



the interfacecondition (I),such as exemplifiedby the elaborate work of Daiy [9].

This difficulty can be alleviated by using a continuum surface force (CSF) model

proposed by BrackbiU, et _d. [2]. When the CSF model is used, the interface condi-

tion (1) is implied in the momentum equations rather than explicitly imposed, thus
the location of the interface is no longer explicitly required in the calculation. The

computer implementation of the CSF model is therefore relatively simple compared

with other approaches. The combination of the VOF method and the CSF model

has been used by a number of authors to simulate multi-phase phenomenon involv-

ing surface tension and complex topological changes [10, 11]. A detailed description

of the CSF model will be given in the next section.

For methods in the second category [12, 13, 14, 15, 16], which are referred to as

"front tracking" methods, imposing the interface condition (1) is easy compared

with the first, because the interface always coincides with mesh sides. However, it

requires frequent updating of the computational mesh, which can be a complex and

time-consuming procedure. In particular, it encounters severe difficulty when the

flow experiences severe distortions and complex topological changes.

Another approach which can be regarded as a combination of the above is the front-

tracking method introduced by Unverdi and Tryggvason [17]. This approach uses

a fixed, structured grid to represent the flow field. A separate, unstructured grid

is used to represent the interface. The interface is explicitly tracked and kept at a
constant thickness of the order of the mesh size. This ensures that the interface will

not be smeared by numerical diffusion. Much success has been achieved in solving

a variety of two-fluid flow problems using this approach [18, 19]. The difficulty with

this approach is the handling of complex topological changes.

In this paper numerical solutions to problems involving two immiscible fluids are

sought. A large number of such problems deal with the interaction between a liquid

and air, which are often simplified as free-surface problems. In the free-surface

formulation the flow equations are solved only for the liquid, and zero traction is

assumed on the interface. In the present calculation such problems are treated

as true two-fluid cases. The VOF approach and a modified version of the CSF

model, proposed by Jacqmin [3], are used in the simulation. The LSFEM [4] is

used to discretize the governing system of equations. The LSFEM has proven to

be effective in solving the Navier-Stokes equations for incompressible flows [4, 20]

and pure convection equations [21, 22], making it an ideal candidate for the present

applications. Some preliminary two dimensional calculations for two-fluid problems

have been reported in [22]. The contents of this paper are arranged as follows: In
the next section the CSF model will be elaborated. In Section 3 the governing

equations and the discretization procedure will be presented. Some two dimensional

and axisymmetric numerical tests will be presented in Section 4. The first test

case is a two dimensional dam breaking problem. The numerical results by the
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present approach are compared with experimental data and with results obtained

by other approaches. Good agreement is observed. The second test case deals with

an oscillating bubble for both two dimensional and axisymmetric cases. The third

case is a two-liquid interface problem in a closed box. The last test case simulates the

formation of a liquid sheet in a pressure swirl atomizer (a Simplex nozzle). Finally,

some conclusions are given in Section 5.

2 The continuum surface force model

The continuum surface force (CSF) model was introduced by Brackbill, et al. [2]

as a means of treating the surface tension effect in the VOF method. By using

this model, the difficulty in imposing the interface constraints (1) was alleviated.

The basic idea of the CSF model is to regard the interface between two fluids as

a transition region with a finite thickness, instead of a zero-thickness membrane.

The surface tension effect is interpreted as a continuous body force spread across

the transition region, which acts as a source term in the momentum equations. By

using the CSF model, the interface condition (1) no longer needs to be explicitly

imposed, as it is already implied in the momentum equations. The body force in

the CSF model is obtained through some differential operations on the spatially

continuous color function, as follows:

<7

f=  vc (2)

where f is the body force,a and _ are the surfacetension coefficientand the cur-

vature of the interfaces,the same as in (1),C isthe colorfunction,and [C] denotes

the jump of C across the interface.The curvature _ in the above formulation is

calculated from:

_- -(V •n) (3)

where n isthe unit normal to the surface,which isobtained from:

VC

n= Ivc--q (4)

Jacqmin [3] derived the CSF model through the analysis of tension energy. He

pointed out that the surface tension force can be expressed as the divergence of a

stress tensor which is uniquely defined by the gradient of the color function. Let

Tq denote the the stress components in a Cartesian coordinate system. They are
related to the color function C as :

a l (OCOC OCOC)
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- [c] I I_ - _'j IVCl (2)

where 6ij is the Kronecker delta.

The volumetric body force caused by the surface tension is expressed as:

_ O_'_j (6)

It can be easily verified that f defined by Eqs. (5) and (6) is analytically equivalent

to that of the original CSF model given by Eqs. (2)-(4). The advantage of using the

formulation given by Eqs. (5) and (6) instead of the original CSF model is that Eqs.

(5) and (6) do not require the explicit calculation of the normalized gradient term in

the right hand side of Eq. (4), whose definition is not clear when the denominator

[VC[ approaches zero. In Eqs. (5) and (6) both -r and f are well defined in the whole
domain; and naturally vanish when [VC[ becomes zero. An additional advantage

of using the stress tensor r is that it can be regarded as part of the momentum

flux. In many numerical procedures -r can be used directly and there is no need to

calculate f.

It is worth pointing out that the stress tensor r also describes more directly the

fluid physics at the interface than the force term f. To illustrate this argument, let

1 and 2 denote, respectively, the directions along and normal to the interface in two

dimensions (Figure 1). We have:

(vc)l : 0, (vch = Ivcl

The stress components are (for clarity the definition of stress is a/so given in Fig-

ure 1):
Or

rl_= _-_IVCI, _ = r_2= r2_= 0

From the above we have:

f "rnds = a
2

This indicates that when the interface thickness approaches zero, the stress tensor

defined by Eq. (5) also approaches the true surface tension. The fact that _-n is

always positive in the transition region reflects that the interface is like a stretched

membrane. I" is also useful in situations when the surface tension coefficient a is no

longer constant.
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Figure 1: The continuum surfaceand the stress components

It should be pointed out that Lafaurie, et al. [11] introduced a capillary pressure

tensor T, and used it as a correction to the momentum stress tensor. T is defined

as:

T = cr (I - n ® n)IVCl (7)

where n is the unit normal to the surface as defined by Eq. (4). It is easy to verified

that. in Eqs. (5) and (6) and T in Eq. (T)are also an_aytic_nyequivalentexcept
for a minus sign. Again the advantage of using r is that it bypasses the calculation
of n.

3 The Governing Equations and the Discretiza-

tion Procedure

The governing equations for the two-fluid problems are the standard Navier-Stokes

equations. Incompressibility is assumed for both fluids. In order to use the Co

element in the LSFEM formulation, the governing equations need to be re-written

as a first-order system. Here we choose the following velocity-pressure-vorticity
form:

V.u=O (s)
Ou

p_ +p(u.V)u+Vp+_(v ×_,)

- vu + (vu)T)= f (9/

in which p is the density, u is the velocity vector, p is the pressure, w is the vorticity

vector, # is the dynamic viscosity, and f is the body force, which generally consists
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of the surface tension effect given by Eq. (3) and the gravitational force. The terms

in the last pair of brackets on the left hand side represents the effect of non-uniform

viscosity.

The vorticity _ is defined by the velocity u as:

_=_7XU (i0)

From the above we immediately have:

V.oJ=0 (11)

The above equation system, Eqs. (8)-(11), has been used by Jiang et al. [23] in the

theoretical analysis of Navier-Stokes equations systems; and has been extensively

used as the basis of LSFEM calculations [4, 20, 24].

The fluids are identified by the different value of the color function C, which is

convected by the flow field:
aC

o-T+ (u. v)c = 0 (12)

Some numerical examples in this paper deal with axisymmetric (non-swirling and

swirling) flows, which require the above equations to be recast into a cylindrical

coordinate system. These equations will be given in Appendix A.

Fluid properties such as the density and the viscosity are assumed to be distributed

in the same manner as C, i.e.,

p2 - pl (C - C1) (13)
P = Pl+ 62-- C1

/_2 -/zl (C- C1) (14)
# = _1+ C2 C1

The governing equations, Eqs. (8)-(12), are first discretized in time. The backward

Euler difference scheme is used:

V. u "+1 = 0 (15)

p.+l un+l--_._ tl" + pn+l (u.+l • V)U n+l + Vp.+l + #n+l (V X _.+1)

__ (V.n+l.VUn+l+_7.n+l. (_Tun+I)T) = f a+l (16)

w '_+1 = V x u '_+l (17)

C "+1 - C"
+ (u "+x. V)C '_+1 = 0 (18)

At



The superscript 'n' denotes the previous time step and 'n + 1' denotes the current

time step.

The above equations, Eqs. (15)-(18), are further linearized. To ensure time-accuracy

for time-dependent problems linearization iterations are performed within each time

step (typically three iterations are used). For steady state problems only one lin-

earization iteration is performed in each time step. Let r denote the number of

linerization iterations, the linearization is carried out as follows:

V.(u _÷1] =0 (19)
J [,]

)I,,÷ ×_, J [,.-11 [,'l

+ v(_+l)E,-ll , ,t,-11 ," ;t.-11 , ,t,-_l/ /
(_+1_ - v ×(._+1_ = 0 (21)

J [,.] _, j [,.1

A, + .v - (22)\ \ J [,] [,.] At

In theabove(C"+_)iol-- C", (_"+_)tol-- _'_and(u'_+l)[ol= u".

At this stage the standard LSFEM procedure [4] is introduced for spatial discretiza-

tion. We note that the solution of the flow field ((u_+_)[,], (p_+_)[,], (a_+_)[,]) does

not require the knowledge of (C_+1)[,], Thus for each hnearization iteration, Eqs.

(19-21) are first solved. Then the newly obtained (u_+_)l,] is used in Eq. (22) to

solve for (C_+1)[,]. We use reduced integration (one point Gauss quadrature for

bi-linear elements) in the solution of Eqs. (19)-(21). The reason for so doing is that,

as pointed out by Jiang and Povinelli [4], the LSFEM with Gaussian quadrature is

equivalent to the collocation least-squares method; and the use of reduced integra-

tion makes the total number of collocation points compatible with the total number

of unknowns and has proved to result in better accuracy [21]. For Eq. (22), however,

we have used exact numerical integration (2 x 2 Gauss points for bi-hnear elements),

because using reduced integration sometimes produces oscillatory solutions for the

color function. Such oscillations will further result in unacceptable errors in the

tension force, which is obtained by twice differentiating the color functions. In order

to avoid excessive numerical diffusion and to maintain time accuracy, the time step

is chosen so that the corresponding CFL number is less than or close to unity for

true transient problems. If only steady state results are of interest, much larger

time steps are used. A Jacobi-preconditioned conjugate gradient (JCG) method has
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been used to solve the algebraic equations. Since the LSFEM always results in a

symmetric, positive-definite matrix, the JCG method is guaranteed to converge to
the correct solution. Since the JCG iterations can be carried out in an element-

by-element fashion such that no global matrix needs to be stored [25], very large

problems can be solved with moderate computer memory requirements [20].

The body force term (f_+1)[,_1] in Eq. (20)is calculated using Eqs. (5) and (6). The

finite element solution of _- obtained from Eq. (5) is discontinuous across element

boundaries. In order to use Eq. (6) to obtain the body force f, the r field needs

to be spatially continuous. Such a continuous field can be obtained by treating

the discontinuous field with various recovery procedures (see [26] and the references

therein). In this paper only bi-linear finite element is used for the discretization
and a simple averaging method [27] is used for the recovery procedure. For higher

order elements, the superconvergent patch recovery (SPR) [26] should be used. The

recovery procedure is also used to obtain a continuous f field.

4 Numerical Examples

4.1 A Broken Dam Problem

This problem has been used by many as a test case for simulating free-surface

problems. Experimental data for this case are available [28]. Here the problem is

solved as a two-fluid problem involving both the water and air. Zero surface tension

and slippery walls (left and bottom sides) are assumed. On the top and right sides

zero pressure is imposed. In addition, if inflow is detected on the top and right

sides, the density of air is imposed. The computational domain is 2 units high and

6 units long. Initially, water occupies a 1 × 1 area at the bottom left corner. The

computational mesh consists of 120 x 40 uniform bilinear quadrilateral elements.

The time step is At = 0.05. The nondimensionalized gravitational acceleration, g,

is taken to be unity. The viscosity is set at 3.05 × 10 -s for water (which is the same

choice as in [29]) and 3.05 x 10 -s for air. The densities for water and air are 1 and

0.001, respectively.

Figure 2 shows free surface profiles (a contour line of density at p = 0.5) and the

pressure contours at various times. The calculated water front location and water

column height are compared with the experimental data in Figure 3. It can be seen

that the calculated results are in good agreement with the experimental data [28]

and with the calculation results in [29].



Figure 2: A broken dam, free surface profile and pressure contours.

bottom: t - 0.5, 1.0, 1.5, 2.0, 2.5, 3.0.
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Figure 3: A broken dam, front location and water column height.

calculated results; dots -- experimental data.

4.2 An Oscillating Bubble

solid line --

In this example the oscillation of a bubble due to surface tension is studied. Both

two-dimensional planar and axisymmetric cases are considered. The two dimensional

case was simulated by Fyfe et al. [13] using a Lagrangian approach. The compu-

tational domain in this calculation is 4 x 12 units with the symmetry plane/axis

along the longer side. The computational mesh consists of 40 x 120 uniform bilin-

ear quadrilateral elements. Initially the shape of the bubble is elliptical, given by

x2/4 + z 2 - 1. The density of the fluid inside and outside the bubble is 1.5 and 0.5,

respectively. The dynamic viscosity is 0.01 for both fluids. A time step of/_t = 0.05

is used in both cases. After the calculation reaches t = 15.0, viscosity is increased to

1.0 to allow the solution to converge to steady state. When steady state is reached

the sizes of the bubbles are 1.40 and 1.58, respectively, while the theoretical values

are 1.41 and 1.59. At steady state, it is verified that the Laplace's formulas Eq. (1)

for the pressure jump is satisfied.

In Figs. 4 and 5 the interface shapes at different times are shown for two dimen-

sional and axisymmetric cases, respectively. The corresponding time history of the

interface locations on the x -axis is shown in Figure 6. The oscillation periods are

estimated (based on the first two cycles) to be 7.6 for the two-dimensional case and

7.2 for the axisymmetric case. Theoretical solutions of the oscillation periods are

available from a linear analysis for small amplitudes (see [13, 19] for details and

references), which for this example are 6.1 for the two-dimensional case and 6.3 for

the axisymmetry case. Since in the calculations both nonlinear and viscous effects
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Figure 4: An oscillating bubble, interface profile for two dimensional case, t =

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, respectively
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Figure 5: An oscillating bubble, interface profile for a0dsymmetric case, t =

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 40, respectively

13



2.0

1.0

0_
O0 5.0 10.0 15.0

2.0

1.8

x 1,6

1.4

1.2
0.0 15.05.0 1().0 '

t

Figure 6: An oscillating bubble, time history of the interface location on the x -axis.

top: two dimensional case; bottom: a_isymmetric case.
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are present, the theoretical solutions can be used only as references. The current
numerical simulation predicts higher values of the oscillation periods than linear

theory, which is consistent with the experience of Fyfe et al. [13].

4.3 Two-Uquid Interface Problem

This example is due to Tezduyar, et al. [16]. In this problem, a two dimensional

0.8 x 0.6 box is fully occupied by two liquids of equal volume. The density of the

fluids are 1.0 and 2.0, respectively. The gravitational acceleration is 0.294. The

lighter liquid is placed on top of the heavier one. Initially the interface is a straight

line, with a slope of 0.25. The dynamical viscosity is 0.001 (the same for both

liquids). Zero surface tension is assumed. The computational mesh consists of
21 x 42 uniform bilinear elements. A time step of At = 0.25 is used throughout

the calculation (which corresponds to a CFL number close to 1 when the velocity

reaches its maximum at approximately t = 6). Slippery wall conditions are used

on all four sides. Figure 7 shows the interface profile and velocity field at different

times. Figure 8 shows the time history of interface location on the left and right

hand side walls (relative to and normalized by the average height). The results agree

well with those presented in [16].

4.4 Flow in a Pressure Swirl Atomizer

This example deals with the swirling flow in a pressure swirl atomizer (a Simplex

nozzle). Simplex nozzles are widely used as fuel atomizers in gas turbine engines.

The formation of a conical liquid sheet is characteristic of such nozzles. Prediction

of the thickness of the liquid sheet and the exit angle for various inlet conditions

provides helpful information in the design process. The computational domain for
the current simulation is shown in Figure 9. The liquid enters to the swirl chamber

though a number of inlet slots. For the present calculation, axisymmetry is assumed.

Gravitational effects are ignored. The computational mesh, shown in Figure 10,
consists of 3600 bilinear elements with 3741 nodes. Initially the whole domain is

filled with motionless air. At * > 0 liquid begins to stream into the domain through

the inlet slots. At the inlet, values of the liquid density and velocity are prescribed.

The prescribed values are: u, = -4.8, u0 = 8.0, uz = 3.6, p = 0.1 The density of

the air is p = 0.01. The dynamic viscosity for both fluids are # = 0.005. For nodes

on the free boundary, the density of air is imposed ff inflow is detected, nothing

is imposed if outflow is detected. Slippery boundary conditions are imposed on

portions of the wall; and non-slip conditions are imposed elsewhere on the wall, as

shown in Figure 9. The pressure is specified on the top left corner of the domain. A
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Figure 7: Two-liquid interface problem, interface profile and velocity field, t =

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, respectively
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constant time step At = 0.1 is used throughout the calculation. As only the steady

state solution is of interest, a linearization iteration is performed only once in each

time step. Figure 10 shows the steady state interface profile. The formation of the

conical liquid sheet is successfully predicted in this simulation. This is a prehminary

simulation and no attempt has been made to compare computational results with

measured data. At the moment, no experimental data are available for comparison.

fmz f:i_

o

o

_ _tl2t

2.0 _--

4.0

Figure 9: Flow in a pressure swirl atomizer, the problem definition
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Figure 10: Flow in a pressureswirl atomizer, the computational mesh and the

interface profile

5 Concluding Remarks

In this paper a numerical procedure based on a CSF model and the LSFEM is pre-

sented for two-fluid flow problems. Numerical tests carried out on a number of two

dimensional planar and axisymmetric flows indicate that this approach is capable

of simulating such flow phenomena. The present approach has the advantage in the

ability to handle complex topological changes such as the breakup of a liquid jet.

Another advantage is the ability to handle complex geometrical configurations in

practical engineering environments, since the LSFEM is based on totally unstruc-

tured grids. Currently the interface is typically spread over 3 - 5 grids. A change
of the interface thickness is also observed in the calculations. The analysis by Haj-

Haxiri [30] indicates that the migration velocity is strongly affected by the smearing

of interface. Thus, to ensure good accuracy of the simulation a fine grid would have

to be used. Improvement of the accuracy of the numerical scheme is expected by

introducing higher order discretization schemes in both time and space. Our tests

[22] indicate that the discontinuity can be modeled within 3 grids, even when the

interface undergoes very large deformation due to a highly vortical flow field.
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A The Governing Equations in Cylindrical Co-

ordinate System

The Navier-Stokes equations given by Eqs. (8)-(9) can be written in a cylindrical

coordinate system as:

Oz

The definition of w, Eq. (10), is given as:

10u_
0.) r r O0 Oz

Ou, Ou_
wo = "Oz Or

Ouo 1
_ = _ + -uor

couo

I COu,

r coo

The compatibility condition, Eq. (11), in this system becomes:

cow, 1 1 COwo cowz

COt + -w, + ---+ _ = 0r r 00 COz

The stress components due to surface tension are:

o(10c c )_- - [c] IVClco, cot-IVCI

(23)

(24)

(25)

(26)

(27)

(2s)

(29)

(30)

(31)
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_(vc _acac )_ - [c] I 13 _ _- IVCl (32)

'-= - [c] I IOz Oz -Ivcl (33)
a 10C

_,o = to,- [C] r0r

a ( 1 lOCOC) (35)_o_ = _-_o= [c] IVCI_ oo Oz

T, z -- "_z.P -'- _ - ( l ococ)[el IVCl or

in which IVC I _/(oo__, )2 {!0_ ,_2 2.= +,. oo,
The body force components due to the above stress tensor is:

(36)

(az)

Or,, 1 10r, o Or,,
I, - _ + 7 (_" - roo)+ -r -_ + -g;z (38)

Or, o 10roo 2 Oro,
Io - Or + ---rO0 + -r,or + --Oz (39)

Or, z 10roz 1 Or_

I. = 0--7+ -r_oo + -r,.r + _Oz (40)

When the flow is axisymmetric all the 0-derivatives become zero. Further if the flow

is non-swirling, uo becomes zero. For such cases the governing equations are further

simplified.
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